Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Environ Manage ; 345: 118696, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549639

RESUMO

Invasive alien species have widespread impacts on native biodiversity and ecosystem services. Since the number of introductions worldwide is continuously rising, it is essential to prevent the entry, establishment and spread of new alien species through a systematic examination of future potential threats. Applying a three-step horizon scanning consensus method, we evaluated non-established alien species that could potentially arrive, establish and cause major ecological impact in Spain within the next 10 years. Overall, we identified 47 species with a very high risk (e.g. Oreochromis niloticus, Popillia japonica, Hemidactylus frenatus, Crassula helmsii or Halophila stipulacea), 61 with high risk, 93 with moderate risk, and 732 species with low risk. Many of the species categorized as very high or high risk to Spanish biodiversity are either already present in Europe and neighbouring countries or have a long invasive history elsewhere. This study provides an updated list of potential invasive alien species useful for prioritizing efforts and resources against their introduction. Compared to previous horizon scanning exercises in Spain, the current study screens potential invaders from a wider range of terrestrial, freshwater, and marine organisms, and can serve as a basis for more comprehensive risk analyses to improve management and increase the efficiency of the early warning and rapid response framework for invasive alien species. We also stress the usefulness of measuring agreement and consistency as two different properties of the reliability of expert scores, in order to more easily elaborate consensus ranked lists of potential invasive alien species.


Assuntos
Ecossistema , Espécies Introduzidas , Espanha , Reprodutibilidade dos Testes , Biodiversidade
2.
Biol Rev Camb Philos Soc ; 97(5): 1930-1947, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35808863

RESUMO

Disturbances alter biodiversity via their specific characteristics, including severity and extent in the landscape, which act at different temporal and spatial scales. Biodiversity response to disturbance also depends on the community characteristics and habitat requirements of species. Untangling the mechanistic interplay of these factors has guided disturbance ecology for decades, generating mixed scientific evidence of biodiversity responses to disturbance. Understanding the impact of natural disturbances on biodiversity is increasingly important due to human-induced changes in natural disturbance regimes. In many areas, major natural forest disturbances, such as wildfires, windstorms, and insect outbreaks, are becoming more frequent, intense, severe, and widespread due to climate change and land-use change. Conversely, the suppression of natural disturbances threatens disturbance-dependent biota. Using a meta-analytic approach, we analysed a global data set (with most sampling concentrated in temperate and boreal secondary forests) of species assemblages of 26 taxonomic groups, including plants, animals, and fungi collected from forests affected by wildfires, windstorms, and insect outbreaks. The overall effect of natural disturbances on α-diversity did not differ significantly from zero, but some taxonomic groups responded positively to disturbance, while others tended to respond negatively. Disturbance was beneficial for taxonomic groups preferring conditions associated with open canopies (e.g. hymenopterans and hoverflies), whereas ground-dwelling groups and/or groups typically associated with shady conditions (e.g. epigeic lichens and mycorrhizal fungi) were more likely to be negatively impacted by disturbance. Across all taxonomic groups, the highest α-diversity in disturbed forest patches occurred under moderate disturbance severity, i.e. with approximately 55% of trees killed by disturbance. We further extended our meta-analysis by applying a unified diversity concept based on Hill numbers to estimate α-diversity changes in different taxonomic groups across a gradient of disturbance severity measured at the stand scale and incorporating other disturbance features. We found that disturbance severity negatively affected diversity for Hill number q = 0 but not for q = 1 and q = 2, indicating that diversity-disturbance relationships are shaped by species relative abundances. Our synthesis of α-diversity was extended by a synthesis of disturbance-induced change in species assemblages, and revealed that disturbance changes the ß-diversity of multiple taxonomic groups, including some groups that were not affected at the α-diversity level (birds and woody plants). Finally, we used mixed rarefaction/extrapolation to estimate biodiversity change as a function of the proportion of forests that were disturbed, i.e. the disturbance extent measured at the landscape scale. The comparison of intact and naturally disturbed forests revealed that both types of forests provide habitat for unique species assemblages, whereas species diversity in the mixture of disturbed and undisturbed forests peaked at intermediate values of disturbance extent in the simulated landscape. Hence, the relationship between α-diversity and disturbance severity in disturbed forest stands was strikingly similar to the relationship between species richness and disturbance extent in a landscape consisting of both disturbed and undisturbed forest habitats. This result suggests that both moderate disturbance severity and moderate disturbance extent support the highest levels of biodiversity in contemporary forest landscapes.


Assuntos
Biodiversidade , Florestas , Animais , Aves , Ecossistema , Humanos , Plantas , Árvores
3.
Water Res ; 188: 116537, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33126005

RESUMO

Nitrate (NO3-) pollution adversely impacts surface and groundwater quality. In recent decades, many countries have implemented measures to control and reduce anthropogenic nitrate pollution in water resources. However, to effectively implement mitigation measures at the origin of pollution,the source of nitrate must first be identified. The stable nitrogen and oxygen isotopes of NO3- (ẟ15N and ẟ18O) have been widely used to identify NO3- sources in water, and their combination with other stable isotopes such as boron (ẟ11B) has further improved nitrate source identification. However, the use of these datasets has been limited due to their overlapping isotopic ranges, mixing between sources, and/or isotopic fractionation related to physicochemical processes. To overcome these limitations, we combined a multi-isotopic analysis with fecal indicator bacteria (FIB) and microbial source tracking (MST) techniques to improve nitrate origin identification. We applied this novel approach on 149 groundwater and 39 surface water samples distributed across Catalonia (NE Spain). A further 18 wastewater treatment plant (WWTP) effluents were also isotopically and biologically characterized. The groundwater and surface water results confirm that isotopes and MST analyses were complementary and provided more reliable information on the source of nitrate contamination. The isotope and MST data agreed or partially agreed in most of the samples evaluated (79 %). This approach was especially useful for nitrate pollution tracing in surface water but was also effective in groundwater samples influenced by organic nitrate pollution. Furthermore, the findings from the WWTP effluents suggest that the use of literature values to define the isotopic ranges of anthropogenic sources can constrain interpretations. We therefore recommend that local sources be isotopically characterized for accurate interpretations. For instance, the detection of MST inferred animal influence in some WWTP effluents, but the ẟ11B values were higher than those reported in the literature for wastewater. The results of this study have been used by local water authorities to review uncertain cases and identify new vulnerable zones in Catalonia according to the European Nitrate Directive (91/676/CEE).


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Nitratos/análise , Isótopos de Nitrogênio/análise , Espanha , Poluentes Químicos da Água/análise
4.
PLoS One ; 12(3): e0173599, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28355225

RESUMO

Wildfires play a determining role in the composition and structure of many plant and animal communities. On the other hand, climate change is considered to be a major driver of current and future fire regime changes. Despite increases in drought in many areas of the world, the effects of aridity on post-fire colonization by animals have been rarely addressed. This study aims to analyse how a regional aridity gradient affects post-fire recovery of vegetation, bird species richness and the numbers of four early to middle-successional warbler species associated with the shrub cover. The database contains bird relative abundance and environmental variables from 3072 censuses in 695 transects located in 70 recently burnt areas (1 to 11 years after wildfire) in Catalonia (Spain), which were sampled between 2006 and 2013. Generalized linear mixed models (GLMMs) showed that plant cover was affected by time since fire, aridity and forest management. However, only the highest vegetation height layer (>100 cm) recovered slower in arid areas after fire. Time since fire positively influenced bird species richness and the relative abundance of the four focal species. The post-fire recovery of Melodious (Hippolais polyglotta) and Subalpine warblers (Sylvia cantillans) was hampered by aridity. Although this was not demonstrated for Dartford (S. undata) and Sardinian warblers (S. melanocephala), their occurrence was low in the driest areas during the first three years after fire. Overall, this study suggests that future increases in aridity can affect plant regeneration after fire and slow down the recovery of animal populations that depend on understorey and shrublands. Given the recently highlighted increases in aridity and fire frequency in Mediterranean-climate regions, improved knowledge on how aridity affects ecological succession is especially necessary.


Assuntos
Aclimatação/fisiologia , Distribuição Animal/fisiologia , Incêndios/história , Desenvolvimento Vegetal/fisiologia , Dispersão Vegetal/fisiologia , Aves Canoras/fisiologia , Animais , Biodiversidade , Clima , Ecossistema , História do Século XXI , Modelos Lineares , Dinâmica Populacional , Espanha , Fatores de Tempo
8.
Ecol Appl ; 16(5): 1832-41, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17069375

RESUMO

Modeling ecological niches of species is a promising approach for predicting the geographic potential of invasive species in new environments. Argentine ants (Linepithema humile) rank among the most successful invasive species: native to South America, they have invaded broad areas worldwide. Despite their widespread success, little is known about what makes an area susceptible--or not--to invasion. Here, we use a genetic algorithm approach to ecological niche modeling based on high-resolution remote-sensing data to examine the roles of niche similarity and difference in predicting invasions by this species. Our comparisons support a picture of general conservatism of the species' ecological characteristics, in spite of distinct geographic and community contexts.


Assuntos
Formigas/fisiologia , Ecossistema , Algoritmos , Animais , Simulação por Computador , Conservação dos Recursos Naturais , Japão , Modelos Biológicos , América do Norte , Portugal , América do Sul , Espanha
9.
Proc Biol Sci ; 271(1557): 2527-35, 2004 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-15615677

RESUMO

Determining the spread and potential geographical distribution of invasive species is integral to making invasion biology a predictive science. We assembled a dataset of over 1000 occurrences of the Argentine ant (Linepithema humile), one of the world's worst invasive alien species. Native to central South America, Argentine ants are now found in many Mediterranean and subtropical climates around the world. We used this dataset to assess the species' potential geographical and ecological distribution, and to examine changes in its distributional potential associated with global climate change, using techniques for ecological niche modelling. Models developed were highly predictive of the species' overall range, including both the native distributional area and invaded areas worldwide. Despite its already widespread occurrence, L. humile has potential for further spread, with tropical coastal Africa and southeast Asia apparently vulnerable to invasion. Projecting ecological niche models onto four general circulation model scenarios of future (2050s) climates provided scenarios of the species' potential for distributional expansion with warming climates: generally, the species was predicted to retract its range in tropical regions, but to expand at higher latitude areas.


Assuntos
Formigas/fisiologia , Clima , Demografia , Meio Ambiente , Modelos Biológicos , Animais , Previsões , Geografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...